Modeling of Data

Physics 113 —02/25/21



General Problem setup

* Given a set of observations, want to summarize data by fitting a model f
 Model depends on a set of adjustable parameters 61,05, ... 0%

* Models can come from underlying theory to explain the observations or
they can be simply used to interpolate or extrapolate the observations.
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* Approach: Define "Merit function’ that measures agreement between
observations and model with particular set of parameters.

 The parameters of the model are adjusted to find an extremum (’best fit’) of the
merit function -> Optimization!



Example (Simple)

* A1 dimensional quadratic model

Yy = f($’a, b, C) — agj2 + bx + c 20.0

17.5
* A multidimensional quadratic model
y:f($1’x2‘a'7b’c):a'aj%_l_be—FC
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Example (Advanced)

* Fitting a gravitational lens magnification pattern to PKS 1413+135
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Y — f(t‘t07tE7 q,s,,7, R, 97 BO) BE)

* Very different models, same fitting
paradigm.




Outline

* Goodness of fit and merit functions
* Least squares

* Linear models

* Errors

* Regularization

* Nonlinear models

* Markov Chain Monte Carlo



Likelihood Function

* Probability of your data given your model

L(0) = p({yi}i110)

Pely *
* Measured data always has some degree of  °| — “?‘ by
Uncertainty. °"Zo s 10 -0s o0 05

e Even if your model is perfectly specified,
your likelihood will never be L = 1.
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Likelihood Function

 The likelihood function can be used as a merit function: the model
parameters that best fit your data maximize the likelihood function.

* Its often easier minimize the log-likelihood function:
—log L(0)

* The specific likelihood function used depends on the error
distribution of your data. y = f(x|0) + ¢

* If the data points are independent and have Gaussian errors:
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Chi-Sguared
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e Sum of squared residuals
* Follows a chi-squared distribution with (N-k) degrees of freedom
* A chi-squared distribution has mean (N-k) and variance 2(N-k)

* Reduced chi squared (mean 1, variance 2/(N-k) ):
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Summary

* To find the model parameters that best fit the data, we minimize the
negative log-likelihood.

e Maximum Likelihood estimation.

* For Gaussian distributed, independent data, this means minimizing
the sum of squared residuals (‘Least squares’).
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* Examples of non-gaussian situations: Counts in a detector (Poisson),
resonance energy of rare particle (Cauchy).




Least squares with linear models

* Linear models are any models that are linear in the parameters to be
estimated, e.g.

Linear

f(z|a,b) = ax + b
f(z|a,b,c) = ax® + bx + ¢
f(x|a,b) = axy + be™?

Non-Linear

f(z|a,b,c) = a+ be¢
f(z]a,b) = a’z + b°



Least Squares with linear models

* Any linear model can be written in matrix form:

xl}

X0

.2
y = azx® + br +c y= |z
* If we have a set of observations, we can write a system of linear
equations:
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 I[f N == 3, then there can be only one exact solution for (a,b,c).
* If N < 3, there are many (infinite) exact solutions for (a,b,c).
* If N> 3, the system is underdetermined. There are likely no exact
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Minimizing the Merit function

N N

mini@mize ly — X0|* = minignize (y; — f(xi]a,b,c)? = minignize (y; — (az? + bx; +¢))?
a,o,c a,0,c
i=1 i=1

* For linear models, we can minimize the merit function analytically:
ly - X0|I° =y'y — 01 X' X0 - 2y' X0
0 2 T T
o5y = X0/ = —2XTX0 - 2XTy = 0

f=(X'"X)"'Xy



What about with data errors?

* Just add in the weight matrix:
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Errors on our model parameter estimates

 Now we have our parameter estimates, what are the errors on 6?

* For linear models with gaussian errors we can get these analytically:

Var(f) =% = (X' wx)!



Linearization: the power of linear models

* Always guaranteed you have best solution

 All the information you want derived analytically (estimates, errors on
estimates)

* For non-linear problems, you can always try to linearize:
f(x) =~ f(zo) + Vf(x0)(x — Xo)

* Many machine learning problems solved quite well with linear
models.



Assessing goodness of fit
. X?\f—k = 15 1
* Reduced Chi Squared N _ & N %-1,_“
* Akaike Information criterion : \\"‘;H} ;
AIC = 2k — 2In(L)

e Bayesian Information Criterion
BIC = klIn(n) — 2In(L).

e OQverfitting -> Useful in interpolation, bad for model fitting
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Techniques to prevent overfitting

* Use a simpler model
 Collect more (independent) data

* Regularization:
minimize ||y — X0

miniemize ly — X0|>+u/0]°

0=(ATA+pul) Ay



Non-linear Models

* What if your model is non-linear (or the errors are non-Gaussian)?

* Now there is no analytic solution to the minimization problem:
minimize |}y — f(x/6))?

e Can use minimization methods from the previous lecture!

e Gradient Descent, Newton’s method etc.

* There may be many local minima, difficult to guarantee that you have
found the best solution.

* No analytic way to get errors on your parameter estimates.



Markov Chain Monte Carlo

e Stochastic Optimization method
* No gradients or Hessians required

 Randomly samples theta space to
#hopefully) give full posterior distribution
or theta.

e Popular in Astrophysics

Posterior Likelihood Prior

p(8|x) o p(x[0)p(6)




Useful to use log probabilities
p(0]x) o< p(x[0)p(6)

log p(6]x) o< log p(x|6) + log p(6)

* An uninformative prior is often used

log p(0x) o log p(x|6)

* For model fitting with Gaussian errors:

log p(A]x) o< —|ly — f(x]0)]|7




How can we sample from p(f|x)?

* Metropolis-Hastings Algorithm

* Use a Markov Chain model: Probability of selecting next point only
depends on current and previous point.

1. Set Gaussian proposal distribution: C]((92 ‘(91)

2. Starting at (91 draw a candidate point from q, 02,

p(92c|><))

p(Xch))
- p(01]x)

p(x[01)

3. Accept point with probability «/(6,605.) = min(l — min(l,

Otherwise reject and 05 = 04

4. Repeat.



N our case

* Uniform priorand log p(0|x) o< —||ly — f(X\H)H2

* This means:

e_||y—f(:’c|92¢)||2

o) = min(1, el AT ly =0l
e—lly—f(x
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How many steps before convergence?

-0.75
61 -1.00
* Open Question 1.25

* Usually have a burnin
period

02
e Advisable to thin !
points to reduce
correlation
03
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Corner Plot

* Once finished, you will end up with
the sampled posterior distribution.

e Can represent as a corner plot.
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Example

* https://github.com/chi-feng/mcmc-demotref-2
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Hamiltonian MCMC

* Uses gradient information (so often not possible to use)
* Typically much more efficient than standard Metropolis-Hastings



