Numerical Optimization

Physics 113
02/10/21

Algorithms for Optimization M J Kochenderfer, T A Wheeler
https://algorithmsbook.com/optimization/ Stanford AA222

https://algorithmsbook.com/optimization/

What is it?

* Finding the extremal value of a function.
* Finding the ’best’ (optimal) value for a set of design

parameters.
minimize f(x) minimize — f (x) subject tox € X
X X

subjectto xe & maximize f(x) subject tox € X

X

Why is it useful?

Ubiquitous in the physical sciences:

* Model Fitting

* Experiment Design

* Minimum energy states (Euler-Lagrange)

OL
dg;

(t,q(t),q(t)) —0 fori=1,...,n.

* Machine Learning!

* Engineering, finance, economics....

Some concrete examples

* Classical Mechanics -- Shape of chain of hanging masses:

N N
1
V(x) = Zngyz + Z 57‘%(\/(% —2iy1)? + (Y — yig1)? — 1)°
i=1 i=1

41 %

x ¢ RV

Biophysics

* Biophysics -- Ground state equilibrium geometry for molecules and
proteins. (AMBER)

V(') = Z ki (I —19)% + Z kai(60; — 69)°

t€bonds i€angles

+ Z Z %V;n[l + COS(’I’sz‘ — 'Yz)]

1€torsions N

N-1 N 70\ 2 70\ ° .
] ij qi4;

e || = _ 9 L
+Z Z f]{ejl('rij) (T’LJ)] T 471'6()7'

j=1 i=j+1

Ising model

* Ferromagnets, spin glasses, neuroscience

H(O’) - — ZJijUin — ,LLZth".
(i j) J

?
5
\
e
v
¥
v-‘f_\‘

1
4
5
o

-
:
il
1
o
3%
s
3

e_ﬂH(a)

Zg

’ :L.“ o

Ps(o) =

* Best approached with stochastic optimization
methods like MCMC

"2

A SR
e et

Model fitting

N
e Dataset and any model f. {%7 Yiy 04 5i=1

* Minimize sum of model residuals: H2

Z lys —

* Only analytical solution for linear models.

. 500 -
* Neural Networks famously non-linear.

f(z)=a+bec =

200 A

100 -

05 0.6 0.7 0.8 0.9 10

Partial Differential Equations

* Relaxation methods for boundary value problems (Gravity,
electrodynamics, fluid dynamics)

* Solving systems of linear equations
V3¢ = 4nGp.

. 1

)

(Viu);; = =(Wit1j + Ui—1j + Uijs1 + U1 — duij) = gij
A(L'"

Al = b

Outline

e Conditions for optimality

 Derivatives and Numerical differentiation

* 1D Optimization and root finding

* Multi-dimensional Optimization

* First order (gradient) Based methods

* Second order methods

* Next lecture: Applications to model fitting, MCMC

Conditions for Optimality

.t f'(x*) = 0, the first-order necessary condition (FONC)
R
2. f’(x*) > 0, the second-order necessary condition (SONC)

1. Vf(x) =0, the first-order necessary condition (FONC)
RY A
2. V?f(x) is positive semidefinite (SONC)

f(x)

inflection

weak local min strong local min

A local maximum. The gradient A saddle. The gradient at the A bowl. The gradient at the
at the center is zero, but the center is zero, but it is not a center is zero and the Hessian
Hessian is negative definite. local minimum. is positive definite. It is a local >

global min

minimum.

Important Aside: Derivatives

f(@) = f(xo) + f'(zo)(z — z0)

First Order Approximation.

f(x) = f(x0) + Vf(x0)" (x — x0)

" Vie) = (%2, ¥, ..., K]
Gradient

T

2 \\4 o / df = Vf(X)TdX
) // (Vef(x) = V() s

J Directional Derivative
%
-2 >

) |
—2 0

1 VEf(x) =

'aZg(x; aZtgxg a2g§x;'
X107 x10x, X10%Xy

9% f(x 092 : X aZggxg
Vf(xlr xz) = [le; sz] Vf(_1; 0) = [_2; 0] _8x{igx2 axfigx)z T Qxndxn

Hessian

Numerical Differentiation

* When the gradient isn’t available directly, we can often approximate it quite well using function evaluations.

~J

1y o JETR) —f(x) f(x+h/2)—f(x—h/2) f(x)—f(x—h)
f(x)"" ~ h

h h
forwardEfference central airfference backwarc??lifference
O(h) O(h?) O(h)
For multivariate functions: ())
Im(f(x+ ih
/
— X) =

Of (0 by = tim @+ D)= @ D) fi(x) 2
0x h—0 h

Complex Step method

af O(h2)

9 (b = lim f(a,b+ h) —f(a,b).
oy h—0 h

Connection: Optimization and Root finding

Root Finding Optimization

f(x) =0 F(x) = 0

Ik

minimize Il f(x) minimize f(x)
X X

subjectto x € X subjectto x € &

Single Variable (1D) Optimization

e Scalar function of scalar variable. minimize

* Minimizing non-analytic functions
* Solving transcendental equations e
e Sub-problem for multivariate optimization

Bracketing

* Bracketing is the process of identifying an interval in which a local
minimum lies and then successively shrinking the interval.

Method 1: Quadratic Fit Search

(4,Ya), (b,), and (c, yc)
q(x) = p1+ pax + pax°

2‘ —1

—pl- 1 a a —ya-
pol =1 b b Y
3] (1 ¢ | |y

>

Method 2: Bisection Method

* Works for both root finding and optimization.

1.

|dentify interval [a,b] that contains minimum.
(i.e. identify interval with f’(a) <0 and f’(b) >0).

Take midpoint (a+b)/2.

ldentify new interval that contains minimum,
e.g. [(a+b)/2, b].

Repeat until convergence.

Method 3: Newton’s Method

* Works for both root finding and optimization.

X — x(k))2 " h

4(x) = £(0) + (x— 2®)f (20) + EZL pratt)

a%q(x) = f’(x(k)) + (x _ x(k))fll(x(k)) —0

1 ((k)
L) _ 0 S -

" (x0)

x(k+1)

x ()

Multivariate Optimization: Local Descent

minimize f(x)
X

e Scalar function of a vector variable

* In multivariate problems, we incrementally improve our design point
X by taking a step that minimizes an approximation of f(x) based on
local information.

lterative descent procedure

1. Check whether x(¥) satisfies the termination conditions. If it does, terminate;
otherwise proceed to the next step.

2. Determine the descent direction d¥) using local information such as the gradient
or Hessian. Some algorithms assume ||d(¥) || = 1, but others do not.
3. Determine the step size or learning rate #(¥). Some algorithms attempt to

optimize the step size so that the step maximally decreases f.?

4. Compute the next design point according to:

x(k+1) (k) 4 5 (k) q(k) (4.1)

Checking for convergence/stopping

1. Check whether x(¥) satisfies the termination conditions. If it does, terminate;
otherwise proceed to the next step.

* Terminate after fixed number of steps.
* If function change small, then terminate. f(x®)—f(x*) <e,
* If norm of the gradient small, terminate. V(D) < e

Which direction to take?

2. Determine the descent direction d¥) using local information such as the gradient
or Hessian. Some algorithms assume ||d(¥) || = 1, but others do not.

* Negative gradient -> Direction of maximum decrease of your function.

Negative Gradient not always the best direction:

Some alternatives:
* Conjugate gradient
* Noisy gradient

e Gradient with Momentum

How big a Step?

3. Determine the step size or learning rate). Some algorithms attempt to
optimize the step size so that the step maximally decreases f.*

4. Compute the next design point according to:

. . (k) _ k— .
e Decaying step size " =o' forye (0]
* Line Search minimize f(x + ad)

Line Search

minignizef(x + ad)

* Generally expensive to solve fully -> Use approximate
Line search.

FOXED) < f(xB) + BaV g f(xF))
B e [0,1]

_ flx) “Lﬂanf(x)
f(X)La,Vf(x) —

Sufficient decrease

f(x+ ad)

First Order methods 1: Gradient Descent

* First order methods use gradient information at each step.

. - N __ (k)
Gradient descent e® — vr(x®) g _ _ Ilg“”’ll
8 /

 Jagged steps -> gets stuck in valleys.

* Neural networks use stochastic gradient descent

-> less likely to get stuck /{
\\ //

Method 2: Gradient Descent with Momentum

* Keeps momentum along previous direction steps:

(k1) — gy(6) _ 4 o(®)

* Less likely to get stuck in valleys

Method 3: Conjugate Gradient Method

* Originally for minimizing quadratic functions / solving systems of
linear equations

1
minimize f(x) = axTAx +b'x+c
X

Vflx) =Ax—b =0

* Modified for general optimization:
dVTA AV =0 forall i #j \
40— g . gk)T (gm _ g(k—n)
‘B o g(k—l)Tg(k—l)

dk+D) = _g(k+1) 4 gk gk \

X1

Second Order Methods 1: Newton’s Method

e Second order methods use gradient and hessian (first and second
derivative information at each point).

e Newton’s method: Extension of 1D method

£0) ~ glx) = F6®) + (g8) T (x = x®) + 2 (x —x®) TH® (x — xV)

Vg(x*)) = g(k +H®(x —x®)) =0
x(k+1) _ (k (H(k)) g(()

* Quadratic Convergence: Converges very fast if function bowl shaped.
* Inverting Hessian can be expensive.

Newton Failures

Oscillation Overshoot Negative f"

N/ N -
I \x

> . >
> > >

¥ x k) xlk+1) x(k+1) xk)

X X

Can be adjusted to include line search and/or step size to avoid these failures

Method 2: Quasi Newton Methods (DFP, BFGS)

* If we don’t know Hessian or it is too expensive to compute, we can
approximate it numerically:

f”(t(k)) ~ f,(x(k)) _f,(x(k_l))
&+ &) _ 6K k) o ‘ x6) — x(6=T)

k k-1
(k1) 5 (k) x®) — x& /(x0))

=g+l _g® T) ey
X

——DFP

—— BFGS

—— L-BFGS (m = 3)
—— L-BFGS (m = 2)
—— L-BFGS (m =1)

Direct Methods (Ot order)

* Can use methods mentioned so far and just approximate gradient
numerically.

* There do exist specialized methods that only use function information
(no gradient).

* Nelder-Mead Simplex:

Scipy.optimize.minimize()

method : str or callable, optional

Type of solver. Should be one ¢
e ‘Nelder-Mead’ (see here)
e 'Powell' (see here)

e 'CG' (see here)

e '‘BFGS' (see here)

e ‘Newton-CG' (see here)
o ‘L-BFGS-B’ (see here)

e TNC' (see here)

e ‘COBYLA' (see here)

e ‘SLSQP' (see here)

e ‘trust-constr’(see here)
e ‘dogleg’ (see here)

e ‘trust-ncg’ (see here)

e ‘trust-exact’ (see here)
e ‘trust-krylov' (see here)

